Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks

verfasst von
E. Oelker, R. B. Hutson, C. J. Kennedy, L. Sonderhouse, T. Bothwell, A. Goban, D. Kedar, C. Sanner, J. M. Robinson, G. E. Marti, D. G. Matei, T. Legero, M. Giunta, R. Holzwarth, F. Riehle, U. Sterr, J. Ye
Abstract

Optical atomic clocks require local oscillators with exceptional optical coherence owing to the challenge of performing spectroscopy on their ultranarrow-linewidth clock transitions. Advances in laser stabilization have thus enabled rapid progress in clock precision. A new class of ultrastable lasers based on cryogenic silicon reference cavities has recently demonstrated the longest optical coherence times to date. Here we utilize such a local oscillator with two strontium (Sr) optical lattice clocks to achieve an advance in clock stability. Through an anti-synchronous comparison, the fractional instability of both clocks is assessed to be 4.8×10-17∕τ for an averaging time τ (in seconds). Synchronous interrogation enables each clock to average at a rate of 3.5×10-17∕τ, dominated by quantum projection noise, and reach an instability of 6.6 × 10−19 over an hour-long measurement. The ability to resolve sub-10−18-level frequency shifts in such short timescales will affect a wide range of applications for clocks in quantum sensing and fundamental physics.

Externe Organisation(en)
University of Colorado Boulder
Stanford University
Physikalisch-Technische Bundesanstalt (PTB)
Horia Hulubei National Institute of Physics and Nuclear Engineering
Menlo Systems GmbH
Max-Planck-Institut für Quantenoptik (MPQ)
Typ
Artikel
Journal
Nature photonics
Band
13
Seiten
714-719
Anzahl der Seiten
6
ISSN
1749-4885
Publikationsdatum
01.10.2019
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Elektronische, optische und magnetische Materialien, Atom- und Molekularphysik sowie Optik
Elektronische Version(en)
https://doi.org/10.1038/s41566-019-0493-4 (Zugang: Unbekannt)