Technology roadmap for cold-atoms based quantum inertial sensor in space

verfasst von
Sven Abend, Baptiste Allard, Aidan S. Arnold, Ticijana Ban, Liam Barry, Baptiste Battelier, Ahmad Bawamia, Quentin Beaufils, Simon Bernon, Andrea Bertoldi, Alexis Bonnin, Philippe Bouyer, Alexandre Bresson, Oliver S. Burrow, Benjamin Canuel, Bruno Desruelle, Giannis Drougakis, René Forsberg, Naceur Gaaloul, Alexandre Gauguet, Matthias Gersemann, Paul F. Griffin, Hendrik Heine, Victoria A. Henderson, Waldemar Herr, Simon Kanthak, Markus Krutzik, Maike D. Lachmann, Roland Lammegger, Werner Magnes, Gaetano Mileti, Morgan W. Mitchell, Sergio Mottini, Dimitris Papazoglou, Franck Pereira Dos Santos, Achim Peters, Ernst Rasel, Erling Riis, Christian Schubert, Stephan Tobias Seidel, Guglielmo M. Tino, Mathias Van Den Bossche, Wolf Von Klitzing, Andreas Wicht, Marcin Witkowski, Nassim Zahzam, Michał Zawada
Abstract

Recent developments in quantum technology have resulted in a new generation of sensors for measuring inertial quantities, such as acceleration and rotation. These sensors can exhibit unprecedented sensitivity and accuracy when operated in space, where the free-fall interrogation time can be extended at will and where the environment noise is minimal. European laboratories have played a leading role in this field by developing concepts and tools to operate these quantum sensors in relevant environment, such as parabolic flights, free-fall towers, or sounding rockets. With the recent achievement of Bose-Einstein condensation on the International Space Station, the challenge is now to reach a technology readiness level sufficiently high at both component and system levels to provide "off the shelf"payload for future generations of space missions in geodesy or fundamental physics. In this roadmap, we provide an extensive review on the status of all common parts, needs, and subsystems for the application of atom-based interferometers in space, in order to push for the development of generic technology components.

Organisationseinheit(en)
Institut für Quantenoptik
QuantumFrontiers
SFB 1227: Designte Quantenzustände der Materie (DQ-mat)
SFB 1464: Relativistische und quanten-basierte Geodäsie (TerraQ)
Externe Organisation(en)
Université Toulouse III – Paul Sabatier (UT3)
University of Strathclyde
Institute of Physics Zagreb
Dublin City University
Ferdinand-Braun-Institut gGmbH, Leibniz-Institut für Höchstfrequenztechnik (FBH)
Observatoire de Paris (OBSPARIS)
Universität Paris-Saclay
Universiteit van Amsterdam (UvA)
Eindhoven University of Technology (TU/e)
Institut d'Optique Graduate School (IOTA)
Institute of Electronic Structure and Laser (IESL-FORTH)
Technical University of Denmark
Humboldt-Universität zu Berlin
Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)
Technische Universität Graz
Austrian Academy of Sciences
Universite de Neuchatel
ICFO – The Institute of Photonic Sciences
Institució Catalana de Recerca i Estudis Avançats (ICREA)
Thales Group
Airbus Group
Università degli Studi di Firenze (UniFi)
Nikolaus-Kopernikus-Universität Toruń
Universite de Bordeaux
Typ
Artikel
Journal
AVS Quantum Science
Band
5
Anzahl der Seiten
31
Publikationsdatum
03.2023
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Elektronische, optische und magnetische Materialien, Atom- und Molekularphysik sowie Optik, Physik der kondensierten Materie, Computernetzwerke und -kommunikation, Physikalische und Theoretische Chemie, Theoretische Informatik und Mathematik, Elektrotechnik und Elektronik
Elektronische Version(en)
https://doi.org/10.1116/5.0098119 (Zugang: Offen)