Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO's Second Observing Run
- authored by
- The LIGO Scientific Collaboration , The Virgo Collaboration , B P Abbott, R Abbott, T D Abbott, S Abraham, F Acernese, K Ackley, C Adams, R X Adhikari, V B Adya, Christoph Affeldt, M Agathos, K Agatsuma, N Aggarwal, O D Aguiar, L Aiello, A Ain, P Ajith, G Allen, A Allocca, M A Aloy, S Bose, D D Brown, Y Chen, H-P Cheng, Shtefan Danilishin, Karsten Danzmann, J Gniesmer, Manuela Hanke, J Hennig, Michele Heurs, H W Lee, X Li, H Lück, P Schmidt, Daniel Steinmeyer, L Sun, Henning Fedor Cornelius Vahlbruch, Y F Wang, Li-Wei Wei, Dennis Max Wilken, Benno Willke, Holger Wittel, L Zhang, M Zhou, Peter Aufmuth, Gerald Bergmann, A. Bisht, N. Bode, P. Booker, M. Brinkmann, M. Cabero, O. de Varona, M. T. Hübner, Stefan Kaufer, J. Junker, S. Khan, C. A. Rose, R. Kirchhoff, P. Koch, S. M. Köhlenbeck, N. Koper, Christina Krämer, V. Kringel, G. Kuehn, S. Leavey, J. Lehmann, J. D. Lough, M. Mehmet, F. Meylahn, Arunava Mukherjee, N. Mukund, M. Nery, F. Ohme, P. Oppermann, M. Phelps, A. Rüdiger, E. Schreiber, B. W. Schulte, Y. Setyawati, M. Standke, Michael Steinke, M. Weinert, F. Wellmann, P. Weißels, J. Woehler, D. S. Wu, S. Hochheim, W. Winkler
- Abstract
We present a search for subsolar mass ultracompact objects in data obtained during Advanced LIGO's second observing run. In contrast to a previous search of Advanced LIGO data from the first observing run, this search includes the effects of component spin on the gravitational waveform. We identify no viable gravitational-wave candidates consistent with subsolar mass ultracompact binaries with at least one component between 0.2 Ma-1.0 Ma. We use the null result to constrain the binary merger rate of (0.2 M, 0.2 M) binaries to be less than 3.7×105 Gpc-3 yr-1 and the binary merger rate of (1.0 M, 1.0 M) binaries to be less than 5.2×103 Gpc-3 yr-1. Subsolar mass ultracompact objects are not expected to form via known stellar evolution channels, though it has been suggested that primordial density fluctuations or particle dark matter with cooling mechanisms and/or nuclear interactions could form black holes with subsolar masses. Assuming a particular primordial black hole (PBH) formation model, we constrain a population of merging 0.2 M black holes to account for less than 16% of the dark matter density and a population of merging 1.0 M black holes to account for less than 2% of the dark matter density. We discuss how constraints on the merger rate and dark matter fraction may be extended to arbitrary black hole population models that predict subsolar mass binaries.
- Organisation(s)
-
QUEST-Leibniz Research School
Institute of Gravitation Physics
QuantumFrontiers
- External Organisation(s)
-
California Institute of Caltech (Caltech)
Louisiana State University
Inter-University Centre for Astronomy and Astrophysics India
Istituto Nazionale di Fisica Nucleare (INFN)
Monash University
LIGO Laboratory
Australian National University
University of Cambridge
Birmingham City University
Instituto Nacional de Pesquisas Espaciais
Tata Institute of Fundamental Research (TIFR HYD)
University of Illinois at Urbana-Champaign
Universitat de Valencia
University of Adelaide
Caltech CaRT
Florida State University
Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
Universität Hamburg
Inje University
Radboud University Nijmegen (RU)
The Chinese University of Hong Kong
Northwestern University
California State University Fullerton
- Type
- Article
- Journal
- Physical review letters
- Volume
- 123
- No. of pages
- 13
- ISSN
- 0031-9007
- Publication date
- 18.10.2019
- Publication status
- Published
- Peer reviewed
- Yes
- ASJC Scopus subject areas
- General Physics and Astronomy
- Electronic version(s)
-
https://arxiv.org/abs/1904.08976 (Access:
Open)
https://doi.org/10.1103/PhysRevLett.123.161102 (Access: Closed)
https://doi.org/10.15488/12072 (Access: Open)