Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light

authored by
The Virgo Collaboration , F. Acernese, M. Agathos, L. Aiello, A. Allocca, A. Amato, S. Ansoldi, S. Antier, M. Arène, N. Arnaud, S. Ascenzi, P. Astone, F. Aubin, S. Babak, P. Bacon, F. Badaracco, M. K. M. Bader, J. Baird, F. Baldaccini, G. Ballardin, G. Baltus, C. Barbieri, P. Barneo, F. Barone, M. Barsuglia, D. Barta, A. Basti, M. Bawaj, M. Bazzan, M. Bejger, I. Belahcene, S. Bernuzzi, D. Bersanetti, A. Bertolini, M. Bischi, M. Bitossi, M. A. Bizouard, F. Bobba, M. Boer, G. Bogaert, F. Bondu, R. Bonnand, B. A. Boom, V. Boschi, Y. Bouffanais, A. Bozzi, C. Bradaschia, M. Branchesi, Henning Vahlbruch, Harald Lück, Karsten Danzmann, Moritz Mehmet
Abstract

Current interferometric gravitational-wave detectors are limited by quantum noise over a wide range of their measurement bandwidth. One method to overcome the quantum limit is the injection of squeezed vacuum states of light into the interferometer's dark port. Here, we report on the successful application of this quantum technology to improve the shot noise limited sensitivity of the Advanced Virgo gravitational-wave detector. A sensitivity enhancement of up to 3.2±0.1 dB beyond the shot noise limit is achieved. This nonclassical improvement corresponds to a 5%-8% increase of the binary neutron star horizon. The squeezing injection was fully automated and over the first 5 months of the third joint LIGO-Virgo observation run O3 squeezing was applied for more than 99% of the science time. During this period several gravitational-wave candidates have been recorded.

Organisation(s)
QuantumFrontiers
Institute of Gravitation Physics
External Organisation(s)
Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
Type
Article
Journal
Physical review letters
Volume
123
ISSN
0031-9007
Publication date
05.12.2019
Publication status
Published
Peer reviewed
Yes
ASJC Scopus subject areas
Physics and Astronomy(all)
Electronic version(s)
https://doi.org/10.1103/PhysRevLett.123.231108 (Access: Open)