Radially dependent stray field signature of chiral magnetic skyrmions

verfasst von
Craig Barton, Alexander Fernández scarioni, Baha Sakar, Sibylle Sievers, Felipe Garcia-Sanchez, Phillip Thompson, Fernando Ajejas, William Legrand, Nicolas Reyren, Thomas Thomson, Vincent Cros, Hans W. Schumacher, Olga Kazakova
Abstract

Magnetic skyrmions are topological spin structures that arise in chiral magnetic systems which exhibit broken inversion symmetry and high spin-orbit coupling resulting in a sizable Dzyaloshinskii-Moriya interaction. Understanding the local spin texture of skyrmions is a vital metrological step in the development of skyrmionic technologies required for novel logic or storage devices in addition to providing fundamental insight into the nanoscale chiral interactions inherent to these systems. Here, we propose that there exists a radially dependent stray field signature that emanates from magnetic skyrmions. We employ quantitative magnetic force microscopy to experimentally explore this stray field signature. To corroborate the experimental observations a semianalytical model is developed which is validated against micromagnetic simulations. This unique approach provides a route to understand the unique radially dependent field signature from skyrmions, which allows an understanding of the underlying local magnetization profile to be obtained. From a practical standpoint, our results provide a rapid approach to validate outputs from numerical or micromagnetic simulations. This approach could be employed to optimize the complex matrix of magnetic parameters required for fabricating and modeling skyrmionic systems, in turn accelerating the technology readiness level of skyrmionic based devices.

Externe Organisation(en)
Physikalisch-Technische Bundesanstalt (PTB)
National Physical Laboratory
Universidad de Salamanca
University of Manchester
Universität Paris-Saclay
Typ
Artikel
Journal
Physical Review B
Band
108
ISSN
2469-9950
Publikationsdatum
12.09.2023
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Elektronische, optische und magnetische Materialien, Physik der kondensierten Materie
Elektronische Version(en)
https://doi.org/10.1103/physrevb.108.104409 (Zugang: Geschlossen)