A space-based quantum gas laboratory at picokelvin energy scales

verfasst von
Naceur Gaaloul, Matthias Meister, Robin Corgier, Annie Pichery, Patrick Boegel, Waldemar Herr, Holger Ahlers, Eric Charron, Jason R. Williams, Robert J. Thompson, Wolfgang P. Schleich, Ernst M. Rasel, Nicholas P. Bigelow
Abstract

Ultracold quantum gases are ideal sources for high-precision space-borne sensing as proposed for Earth observation, relativistic geodesy and tests of fundamental physical laws as well as for studying new phenomena in many-body physics during extended free fall. Here we report on experiments with the Cold Atom Lab aboard the International Space Station, where we have achieved exquisite control over the quantum state of single 87Rb Bose-Einstein condensates paving the way for future high-precision measurements. In particular, we have applied fast transport protocols to shuttle the atomic cloud over a millimeter distance with sub-micrometer accuracy and subsequently drastically reduced the total expansion energy to below 100 pK with matter-wave lensing techniques.

Organisationseinheit(en)
QUEST Leibniz Forschungsschule
SFB 1227: Designte Quantenzustände der Materie (DQ-mat)
Externe Organisation(en)
Universite Paris-Sud
Observatoire de Paris (OBSPARIS)
Universität Ulm
California Institute of Technology (Caltech)
Texas A and M University
University of Rochester
DLR-Institut für Quantentechnologien
Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)
Typ
Artikel
Journal
Nature Communications
Band
13
ISSN
2041-1723
Publikationsdatum
22.12.2022
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Chemie (insg.), Biochemie, Genetik und Molekularbiologie (insg.), Allgemein, Physik und Astronomie (insg.)
Elektronische Version(en)
https://doi.org/10.48550/arXiv.2201.06919 (Zugang: Offen)
https://doi.org/10.1038/s41467-022-35274-6 (Zugang: Offen)