Local measurement scheme of gravitational curvature using atom interferometers
- verfasst von
- Michael Werner, Ali Lezeik, Dennis Schlippert, Ernst M. Rasel, Naceur Gaaloul, Klemens Hammerer
- Abstract
Light pulse atom interferometers (AIFs) are exquisite quantum probes of spatial inhomogeneity and gravitational curvature. Moreover, detailed measurement and calibration are necessary prerequisites for very-long-baseline atom interferometry (VLBAI). Here we provide a theoretical analysis of the phase resulting in a complex gravitational environment and introduce a novel interferometer geometry which singles out the phase shift proportional to the curvature of the gravitational potential. The scale factor depends only on well controlled quantities, namely the photon wave number, the interferometer time and the atomic recoil, which allows the curvature to be accurately inferred from a measured phase. As a case study, we numerically simulate such a gradiometric interferometer in the context of the Hannover VLBAI facility and prove the robustness of the phase shift in gravitational fields with complex spatial dependence. We define an estimator of the gravitational curvature for non-trivial gravitational fields and calculate the trade-off between signal strength and estimation accuracy with regard to spatial resolution. As a perspective, we discuss the case of a time-dependent gravitational field and corresponding measurement strategies.
- Organisationseinheit(en)
-
Institut für Quantenoptik
Institut für Theoretische Physik
- Typ
- Artikel
- Journal
- Communications Physics
- Band
- 8
- Anzahl der Seiten
- 12
- ISSN
- 2399-3650
- Publikationsdatum
- 14.11.2025
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Allgemeine Physik und Astronomie
- Elektronische Version(en)
-
https://doi.org/10.1038/s42005-025-02396-4 (Zugang:
Offen)
https://doi.org/10.48550/arXiv.2409.03515 (Zugang: Offen)