Possible points of blow-up in chemotaxis systems with spatially heterogeneous logistic source

verfasst von
Tobias Black, Mario Fuest, Johannes Lankeit, Masaaki Mizukami
Abstract

We discuss the influence of possible spatial inhomogeneities in the coefficients of logistic source terms in parabolic–elliptic chemotaxis-growth systems of the form ut=Δu−∇⋅(u∇v)+κ(x)u−μ(x)u2,0=Δv−v+u in smoothly bounded domains Ω⊂R2. Assuming that the coefficient functions satisfy κ,μ∈C0(Ω¯) with μ≥0 we prove that finite-time blow-up of the classical solution can only occur in points where μ is zero, i.e. that the blow-up set B is contained in {x∈Ω¯∣μ(x)=0}.Moreover, we show that whenever μ(x0)>0 for some x0∈Ω¯, then one can find an open neighbourhood U of x0 in Ω¯ such that u remains bounded in U throughout evolution.

Organisationseinheit(en)
Institut für Angewandte Mathematik
Externe Organisation(en)
Universität Paderborn
Kyoto University of Education
Typ
Artikel
Journal
Nonlinear Analysis: Real World Applications
Band
73
ISSN
1468-1218
Publikationsdatum
10.2023
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Analysis, Allgemeiner Maschinenbau, Volkswirtschaftslehre, Ökonometrie und Finanzen (insg.), Computational Mathematics, Angewandte Mathematik
Elektronische Version(en)
https://doi.org/10.48550/arXiv.2209.14184 (Zugang: Offen)
https://doi.org/10.1016/j.nonrwa.2023.103868 (Zugang: Geschlossen)