Possible points of blow-up in chemotaxis systems with spatially heterogeneous logistic source
- verfasst von
- Tobias Black, Mario Fuest, Johannes Lankeit, Masaaki Mizukami
- Abstract
We discuss the influence of possible spatial inhomogeneities in the coefficients of logistic source terms in parabolic–elliptic chemotaxis-growth systems of the form ut=Δu−∇⋅(u∇v)+κ(x)u−μ(x)u2,0=Δv−v+u in smoothly bounded domains Ω⊂R2. Assuming that the coefficient functions satisfy κ,μ∈C0(Ω¯) with μ≥0 we prove that finite-time blow-up of the classical solution can only occur in points where μ is zero, i.e. that the blow-up set B is contained in {x∈Ω¯∣μ(x)=0}.Moreover, we show that whenever μ(x0)>0 for some x0∈Ω¯, then one can find an open neighbourhood U of x0 in Ω¯ such that u remains bounded in U throughout evolution.
- Organisationseinheit(en)
-
Institut für Angewandte Mathematik
- Externe Organisation(en)
-
Universität Paderborn
Kyoto University of Education
- Typ
- Artikel
- Journal
- Nonlinear Analysis: Real World Applications
- Band
- 73
- ISSN
- 1468-1218
- Publikationsdatum
- 10.2023
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Analysis, Allgemeiner Maschinenbau, Volkswirtschaftslehre, Ökonometrie und Finanzen (insg.), Computational Mathematics, Angewandte Mathematik
- Elektronische Version(en)
-
https://doi.org/10.48550/arXiv.2209.14184 (Zugang:
Offen)
https://doi.org/10.1016/j.nonrwa.2023.103868 (Zugang: Geschlossen)