Graphical mean curvature flow with bounded bi-Ricci curvature
- verfasst von
- Renan Assimos, Andreas Savas-Halilaj, Knut Smoczyk
- Abstract
We consider the graphical mean curvature flow of strictly area decreasing maps f: M→ N, where M is a compact Riemannian manifold of dimension m> 1 and N a complete Riemannian surface of bounded geometry. We prove long-time existence of the flow and that the strictly area decreasing property is preserved, when the bi-Ricci curvature BRic
M of M is bounded from below by the sectional curvature σ
N of N. In addition, we obtain smooth convergence to a minimal map if Ric
M≥ sup { 0 , sup
Nσ
N}. These results significantly improve known results on the graphical mean curvature flow in codimension 2.
- Organisationseinheit(en)
-
Institut für Differentialgeometrie
Riemann Center for Geometry and Physics
- Externe Organisation(en)
-
University of Ioannina
- Typ
- Artikel
- Journal
- Calculus of Variations and Partial Differential Equations
- Band
- 62
- Anzahl der Seiten
- 26
- ISSN
- 0944-2669
- Publikationsdatum
- 01.2023
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Analysis, Angewandte Mathematik
- Elektronische Version(en)
-
https://doi.org/10.48550/arXiv.2201.05523 (Zugang:
Offen)
https://doi.org/10.1007/s00526-022-02369-3 (Zugang: Geschlossen)