Frequency-Dependent Squeezed Vacuum Source for Broadband Quantum Noise Reduction in Advanced Gravitational-Wave Detectors

verfasst von
Yuhang Zhao, Naoki Aritomi, Eleonora Capocasa, Matteo Leonardi, Marc Eisenmann, Yuefan Guo, Eleonora Polini, Akihiro Tomura, Koji Arai, Yoichi Aso, Yao Chin Huang, Ray Kuang Lee, Harald Lück, Osamu Miyakawa, Pierre Prat, Ayaka Shoda, Matteo Tacca, Ryutaro Takahashi, Henning Vahlbruch, Marco Vardaro, Chien Ming Wu, Matteo Barsuglia, Raffaele Flaminio
Abstract

The astrophysical reach of current and future ground-based gravitational-wave detectors is mostly limited by quantum noise, induced by vacuum fluctuations entering the detector output port. The replacement of this ordinary vacuum field with a squeezed vacuum field has proven to be an effective strategy to mitigate such quantum noise and it is currently used in advanced detectors. However, current squeezing cannot improve the noise across the whole spectrum because of the Heisenberg uncertainty principle: when shot noise at high frequencies is reduced, radiation pressure at low frequencies is increased. A broadband quantum noise reduction is possible by using a more complex squeezing source, obtained by reflecting the squeezed vacuum off a Fabry-Perot cavity, known as filter cavity. Here we report the first demonstration of a frequency-dependent squeezed vacuum source able to reduce quantum noise of advanced gravitational-wave detectors in their whole observation bandwidth. The experiment uses a suspended 300-m-long filter cavity, similar to the one planned for KAGRA, Advanced Virgo, and Advanced LIGO, and capable of inducing a rotation of the squeezing ellipse below 100 Hz.

Organisationseinheit(en)
Institut für Gravitationsphysik
QuantumFrontiers
Externe Organisation(en)
National Astronomical Observatory of Japan (NAOJ)
Graduate University for Advanced Studies
University of Tokyo (UTokyo)
Universite de Savoie
Nationaal instituut voor subatomaire fysica (Nikhef)
University of Electro-Communications
California Institute of Technology (Caltech)
National Tsing Hua University
Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)
Observatoire de Paris (OBSPARIS)
Universiteit van Amsterdam (UvA)
Universität Padua
Typ
Artikel
Journal
Physical review letters
Band
124
ISSN
0031-9007
Publikationsdatum
01.05.2020
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Physik und Astronomie (insg.)
Elektronische Version(en)
https://doi.org/10.1103/PhysRevLett.124.171101 (Zugang: Offen)
https://doi.org/10.1103/PhysRevLett.124.171101 (Zugang: Geschlossen)