A Dual-Species Atom Interferometer Payload for Operation on Sounding Rockets

verfasst von
Michael Elsen, Baptist Piest, Fabian Adam, Oliver Anton, Paweł Arciszewski, Wolfgang Bartosch, Dennis Becker, Jonas Böhm, Sören Boles, Klaus Döringshoff, Priyanka Guggilam, Ortwin Hellmig, Isabell Imwalle, Simon Kanthak, Christian Kürbis, Matthias Koch, Maike Diana Lachmann, Moritz Mihm, Hauke Müntinga, Ayush Mani Nepal, Tim Oberschulte, Peter Ohr, Alexandros Papakonstantinou, Arnau Prat, Christian Reichelt, Jan Sommer, Christian Spindeldreier, Marvin Warner, Thijs Wendrich, André Wenzlawski, Holger Blume, Claus Braxmaier, Daniel Lüdtke, Achim Peters, Ernst Maria Rasel, Klaus Sengstock, Andreas Wicht, Patrick Windpassinger, Jens Grosse, Kai Bleeke
Abstract

We report on the design and the construction of a sounding rocket payload capable of performing atom interferometry with Bose-Einstein condensates of \(^{41}\)K and \(^{87}\)Rb. The apparatus is designed to be launched in two consecutive missions with a VSB-30 sounding rocket and is qualified to withstand the expected vibrational loads of 1.8 g root-mean-square in a frequency range between 20 - 2000 Hz and the expected static loads during ascent and re-entry of 25 g. We present a modular design of the scientific payload comprising a physics package, a laser system, an electronics system and a battery module. A dedicated on-board software provides a largely automated process of predefined experiments. To operate the payload safely in laboratory and flight mode, a thermal control system and ground support equipment has been implemented and will be presented. The payload presented here represents a cornerstone for future applications of matter wave interferometry with ultracold atoms on satellites.

Organisationseinheit(en)
Institut für Quantenoptik
Quantum Sensing
Fachgebiet Architekturen und Systeme
QuantumFrontiers
Externe Organisation(en)
Zentrum für angewandte Raumfahrt­technologie und Mikro­gravitation (ZARM)
Universität Bremen
DLR-Institut für Satellitengeodäsie und Inertialsensorik
Universität Ulm
Ferdinand-Braun-Institut gGmbH, Leibniz-Institut für Höchstfrequenztechnik (FBH)
Universität Hamburg
Humboldt-Universität zu Berlin
Johannes Gutenberg-Universität Mainz
DLR-Instituts für Softwaretechnologie
Typ
Artikel
Journal
Microgravity Science and Technology
Band
35
ISSN
0938-0108
Publikationsdatum
07.09.2023
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Ingenieurwesen (insg.), Physik und Astronomie (insg.), Angewandte Mathematik, Modellierung und Simulation
Elektronische Version(en)
https://doi.org/10.1007/s12217-023-10068-7 (Zugang: Offen)