All-optical coherent quantum-noise cancellation in cascaded optomechanical systems

verfasst von
Jakob Schweer, Daniel Steinmeyer, Klemens Hammerer, Michèle Heurs
Abstract

Coherent quantum noise cancellation (CQNC) can be used in optomechanical sensors to surpass the standard quantum limit (SQL). In this paper, we investigate an optomechanical force sensor that uses the CQNC strategy by cascading the optomechanical system with an all-optical effective negative mass oscillator. Specifically, we analyze matching conditions, losses and compare the two possible arrangements in which either the optomechanical or the negative mass system couples first to light. While both of these orderings yield a sub-SQL performance, we find that placing the effective negative mass oscillator before the optomechanical sensor will always be advantageous for realistic parameters. The modular design of the cascaded scheme allows for better control of the sub-systems by avoiding undesirable coupling between system components, while maintaining similar performance to the integrated configuration proposed earlier. We conclude our work with a case study of a micro-optomechanical implementation.

Organisationseinheit(en)
Institut für Gravitationsphysik
Institut für Theoretische Physik
QuantumFrontiers
SFB 1227: Designte Quantenzustände der Materie (DQ-mat)
Externe Organisation(en)
Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)
Typ
Artikel
Journal
Physical Review A
Band
106
ISSN
2469-9926
Publikationsdatum
28.09.2022
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Atom- und Molekularphysik sowie Optik
Elektronische Version(en)
https://doi.org/10.48550/arXiv.2208.01982 (Zugang: Offen)
https://doi.org/10.1103/PhysRevA.106.033520 (Zugang: Offen)