Acknowledgement

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC-2123 QuantumFrontiers – 390837967

Submit a publication...
Register a dataset...

Showing results 401 - 450 out of 745

2022


Zahn, H. P., Singh, V. P., Kosch, M. N., Asteria, L., Freystatzky, L., Sengstock, K., Mathey, L., & Weitenberg, C. (2022). Formation of Spontaneous Density-Wave Patterns in dc Driven Lattices. Physical Review X, 12(2), Article 021014. https://doi.org/10.1103/PhysRevX.12.021014
Zhang, W., van Leent, T., Redeker, K., Garthoff, R., Schwonnek, R., Fertig, F., Eppelt, S., Rosenfeld, W., Scarani, V., Lim, C. C. W., & Weinfurter, H. (2022). A device-independent quantum key distribution system for distant users. NATURE, 607(7920), 687-691. https://doi.org/10.48550/arXiv.2110.00575, https://doi.org/10.1038/s41586-022-04891-y
Zhang, M., Müller, J., Biskupek, L., & Singh, V. V. (2022). Characteristics of differential lunar laser ranging. Astronomy and Astrophysics, 659, Article A148. https://doi.org/10.1051/0004-6361/202142841
Zhao, Y., Capocasa, E., Eisenmann, M., Aritomi, N., Page, M., Guo, Y., Polini, E., Arai, K., Aso, Y., van Beuzekom, M., Huang, Y.-C., Lee, R.-K., Lueck, H., Miyakawa, O., Prat, P., Shoda, A., Tacca, M., Takahashi, R., Vahlbruch, H., ... Flaminio, R. (2022). Improving the stability of frequency-dependent squeezing with bichromatic control of filter cavity length, alignment, and incident beam pointing. Physical Review D, 105(8), Article 082003. https://doi.org/10.1103/PhysRevD.105.082003
Progress in Particle and Nuclear Physics (2022). Quantum gravity phenomenology at the dawn of the multi-messenger era - A review. Progress in Particle and Nuclear Physics, 125, Article 103948. https://doi.org/10.1016/j.ppnp.2022.103948

2021


Abbott, R., Abbott, T. D., Abraham, S., Acernese, F., Ackley, K., Adams, A., Adams, C., Adhikari, R. X., Adya, V. B., Affeldt, C., Agarwal, D., Agathos, M., Agatsuma, K., Aggarwal, N., Aguiar, O. D., Aiello, L., Ain, A., Ajith, P., Akutsu, T., ... Aufmuth, P. (2021). Searches for Continuous Gravitational Waves from Young Supernova Remnants in the Early Third Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 921(1), Article 80. https://doi.org/10.3847/1538-4357/ac17ea
Amaro-Seoane, P., Bischof, L., Carter, J. J., Hartig, M. S., & Wilken, D. (2021). LION: Laser interferometer on the moon. Classical and quantum gravity, 38(12), Article 125008. https://doi.org/10.1088/1361-6382/abf441
Anders, F., Idel, A., Feldmann, P., Bondarenko, D., Loriani, S., Lange, K., Peise, J., Gersemann, M., Meyer-Hoppe, B., Abend, S., Gaaloul, N., Schubert, C., Schlippert, D., Santos, L., Rasel, E., & Klempt, C. (2021). Momentum Entanglement for Atom Interferometry. Physical Review Letters, 127(14), Article 140402. https://doi.org/10.1103/PhysRevLett.127.140402
Ardila, L. A. P. (2021). Dynamical formation of polarons in a Bose-Einstein condensate: A variational approach. Physical Review A, 103(3), Article 033323. https://doi.org/10.1103/PhysRevA.103.033323
Astrakharchik, G. E., Ardila, L. A. P., Schmidt, R., Jachymski, K., & Negretti, A. (2021). Ionic polaron in a Bose-Einstein condensate. Communications Physics, 4(1), Article 94. https://doi.org/10.1038/s42005-021-00597-1
Bailes, M., Berger, B. K., Brady, P. R., Branchesi, M., Danzmann, K., Evans, M., Holley-Bockelmann, K., Iyer, B. R., Kajita, T., Katsanevas, S., Kramer, M., Lazzarini, A., Lehner, L., Losurdo, G., Lück, H., McClelland, D. E., McLaughlin, M. A., Punturo, M., Ransom, S., ... Vitale, S. (2021). Gravitational-wave physics and astronomy in the 2020s and 2030s. Nature Reviews Physics, 3(5), 344-366. https://doi.org/10.1038/s42254-021-00303-8
Bayerl, P., Folchert, N., Bayer, J., Dzinnik, M., Hollemann, C., Brendel, R., Peibst, R., & Haug, R. J. (2021). Contacting a single nanometer-sized pinhole in the interfacial oxide of a poly-silicon on oxide (POLO) solar cell junction. Progress in Photovoltaics: Research and Applications, 29(8), 936-942. https://doi.org/10.1002/pip.3417
Belke, C., Locmelis, S., Thole, L., Schmidt, H., Behrens, P., & Haug, R. J. (2021). Thickness-dependent gap energies in thin layers of Hf Te5. 2D Materials, 8(3), Article 035029. https://doi.org/10.1088/2053-1583/abf98b
Beule, C. D., Dominguez, F., & Recher, P. (2021). Network model and four-terminal transport in minimally twisted bilayer graphene. Physical Review B, 104(19), Article 195410. https://doi.org/10.1103/PhysRevB.104.195410
Biskupek, L., Müller, J., & Torre, J. M. (2021). Benefit of new high-precision llr data for the determination of relativistic parameters. Universe, 7(2), Article 34. https://doi.org/10.3390/universe7020034, https://doi.org/10.15488/12418
Bisset, R. N., Ardila, L. A. P., & Santos, L. (2021). Quantum Droplets of Dipolar Mixtures. Physical Review Letters, 126(2), Article 025301. https://doi.org/10.1103/PhysRevLett.126.025301
Bockhorn, L., Rode, J. C., Gnörich, L., Zuo, P., Brechtken, B., & Haug, R. J. (2021). Interlayer configurations of self-assembled folded graphene. Applied physics letters, 118(17), Article 173101. https://doi.org/10.1063/5.0047602
Booker, P., de Varona, O., Steinke, M., Weßels, P., Neumann, J., & Kracht, D. (2021). Two-stage fully monolithic single-frequency Er:Yb fiber amplifier at 1556 nm for next-generation of gravitational wave detectors. In M. N. Zervas, & C. Jauregui-Misas (Eds.), Fiber Lasers XVIII: Technology and Systems Article 116650O SPIE. https://doi.org/10.1117/12.2577446
Bornemann, S., Gulink, J., Moro, V., Gil, J. C., Wolter, S., Schottler, G., Bezshlyakh, D., Prades, J. D., Dieguez, A., & Waag, A. (2021). Processing and characterization of monolithic passive-matrix GaN-based MicroLED arrays with pixel sizes from 5 to 50 μm. IEEE photonics journal, 13(5), Article 8200209 . https://doi.org/10.1109/JPHOT.2021.3106584
Bose, S., Melchert, O., Willms, S., Babushkin, I., Morgner, U., Demircan, A., & Agrawal, G. P. (2021). Role of frequency dependence of the nonlinearity on a soliton's evolution in photonic crystal fibers. Optics letters, 46(16), 3921-3924. https://doi.org/10.1364/ol.433238
Brange, F., Schmidt, A., Bayer, J. C., Wagner, T., Flindt, C., & Haug, R. J. (2021). Controlled emission time statistics of a dynamic single-electron transistor. Science advances, 7(2), Article eabe0793. https://doi.org/10.1126/sciadv.abe0793
Brockmüller, E., Hochheim, S., Wessels, P., Koponen, J., Lowder, T., Novotny, S., Neumann, J., & Kracht, D. (2021). Pump combiner with chirally coupled core fibers for side pumped single frequency all fiber amplifiers. In A. L. Glebov, & P. O. Leisher (Eds.), Components and Packaging for Laser Systems VII Article 116670J (Proceedings of SPIE - The International Society for Optical Engineering; Vol. 11667). SPIE. https://doi.org/10.1117/12.2583079
Bruschi, D. E., Paraoanu, G. S., Fuentes, I., Wilhelm, F. K., & Schell, A. W. (2021). General solution of the time evolution of two interacting harmonic oscillators. Physical Review A, 103(2), Article 023707. https://doi.org/10.1103/PhysRevA.103.023707
Bruschi, D. E., Chatzinotas, S., Wilhelm, F. K., & Schell, A. W. (2021). Spacetime effects on wavepackets of coherent light. Physical Review D, 104(8), Article 085015. https://doi.org/10.1103/PhysRevD.104.085015
Buonacorsi, B., Sfigakis, F., Shetty, A., Tam, M. C., Kim, H. S., Harrigan, S. R., Hohls, F., Reimer, M. E., Wasilewski, Z. R., & Baugh, J. (2021). Non-adiabatic single-electron pumps in a dopant-free GaAs/AlGaAs 2DEG. Applied physics letters, 119(11), Article 114001. https://doi.org/10.1063/5.0062486
Büscher, F., Müllner, S., Wulferding, D., Pashkevich, Y. G., Gnezdilov, V., Peshkov, A. A., Surzhykov, A., & Lemmens, P. (2021). Raman scattering of plane-wave and twisted light off chiral molecular liquids. Low temperature physics, 47(11), 959-965. https://doi.org/10.1063/10.0006577
Cao, X., Yang, J., Li, P., Zhang, Y., Rugeramigabo, E. P., Brechtken, B., Haug, R. J., Zopf, M., & Ding, F. (2021). Single photon emission from ODT passivated near-surface GaAs quantum dots. Applied physics letters, 118(22), Article 221107. https://doi.org/10.1063/5.0046042
Chichkov, N. B., Evlyukhin, A. B., & Chichkov, B. N. (2021). Massive surface-plasmon polaritons. Nanophotonics, 10(14), 3777-3778. https://doi.org/10.1515/nanoph-2021-0293
Chichkov, N. B., & Chichkov, B. N. (2021). On the origin of photon mass, momentum, and energy in a dielectric medium [Invited]. Optical materials express, 11(8), 2722-2729. https://doi.org/10.1364/OME.436306
Cope, T. (2021). Entanglement cost for steering assemblages. Physical Review A, 104(4), Article 042220. https://doi.org/10.48550/arXiv.2102.02333, https://doi.org/10.1103/PhysRevA.104.042220
Cope, T. (2021). The binary-outcome detection loophole. New journal of physics, 23(7), Article 073032. https://doi.org/10.1088/1367-2630/ac10a5
Corgier, R., Gaaloul, N., Smerzi, A., & Pezzè, L. (2021). Delta-Kick Squeezing. Physical Review Letters, 127(18), Article 183401. https://doi.org/10.1103/PhysRevLett.127.183401
Cornejo, J. M., Lehnert, R., Niemann, M., Mielke, J., Meiners, T., Bautista-Salvador, A., Schulte, M., Nitzschke, D., Borchert, M. J., Hammerer, K., Ulmer, S., & Ospelkaus, C. (2021). Quantum logic inspired techniques for spacetime-symmetry tests with (anti-)protons. New journal of physics, 23(7), Article 073045. https://doi.org/10.1088/1367-2630/ac136e
De Beule, C., Dominguez, F., & Recher, P. (2021). Effective Floquet model for minimally twisted bilayer graphene. Physical Review B, 103(19), Article 195432. https://doi.org/10.1103/PhysRevB.103.195432
Deppner, C., Herr, W., Cornelius, M., Stromberger, P., Sternke, T., Grzeschik, C., Grote, A., Rudolph, J., Herrmann, S., Krutzik, M., Wenzlawski, A., Corgier, R., Charron, E., Guéry-Odelin, D., Gaaloul, N., Lämmerzahl, C., Peters, A., Windpassinger, P., & Rasel, E. M. (2021). Collective-Mode Enhanced Matter-Wave Optics. Physical review letters, 127(10), Article 100401. https://doi.org/10.1103/PhysRevLett.127.100401
Dharmawan, A. B., Mariana, S., Scholz, G., Hörmann, P., Schulze, T., Triyana, K., Garcés-Schröder, M., Rustenbeck, I., Hiller, K., Wasisto, H. S., & Waag, A. (2021). Nonmechanical parfocal and autofocus features based on wave propagation distribution in lensfree holographic microscopy. Scientific reports, 11(1), Article 3213. https://doi.org/10.1038/s41598-021-81098-7
Dickmann, J. (2021). Thermal noise computation of arbitrary masses in optical interferometers from first principles. Optics express, 29(22), 36546-36558. https://doi.org/10.1364/OE.438507
Dörscher, S., Huntemann, N., Schwarz, R., Lange, R., Benkler, E., Lipphardt, B., Sterr, U., Peik, E., & Lisdat, C. (2021). Optical frequency ratio of a 171Yb+ single-ion clock and a 87Sr lattice clock. METROLOGIA, 58(1), Article 015005. https://doi.org/10.1088/1681-7575/abc86f
Dubielzig, T., Halama, S., Hahn, H., Zarantonello, G., Niemann, M., Bautista-Salvador, A., & Ospelkaus, C. (2021). Ultra-low-vibration closed-cycle cryogenic surface-electrode ion trap apparatus. Review of scientific instruments, 92(4), Article 043201. https://doi.org/10.1063/5.0024423
Evlyukhin, A. B., Poleva, M. A., Prokhorov, A. V., Baryshnikova, K. V., Miroshnichenko, A. E., & Chichkov, B. N. (2021). Polarization Switching Between Electric and Magnetic Quasi-Trapped Modes in Bianisotropic All-Dielectric Metasurfaces. Laser and Photonics Reviews, 15(12), Article 2100206. https://doi.org/10.1002/lpor.202100206
Feldmann, P., Klempt, C., Smerzi, A., Santos, L., & Gessner, M. (2021). Interferometric Order Parameter for Excited-State Quantum Phase Transitions in Bose-Einstein Condensates. Physical review letters, 126(23), Article 230602. https://doi.org/10.1103/PhysRevLett.126.230602
Fernández Scarioni, A., Barton, C., Corte-León, H., Sievers, S., Hu, X., Ajejas, F., Legrand, W., Reyren, N., Cros, V., Kazakova, O., & Schumacher, H. W. (2021). Thermoelectric Signature of Individual Skyrmions. Physical review letters, 126(7), Article 077202. https://doi.org/10.1103/PhysRevLett.126.077202
Flügge, J., Kroker, S., & Schnatz, H. (2021). Fundamental length metrology. Handbook of Laser Technology and Applications: Laser Applications: Medical, Metrology and Communication (Volume Four), 4, 2. https://doi.org/10.1201/9781003130123-2/
Frauendorf, A. P., Niebur, A., Harms, L., Shree, S., Urbaszek, B., Oestreich, M., Hübner, J., & Lauth, J. (2021). Room Temperature Micro-Photoluminescence Studies of Colloidal WS2Nanosheets. Journal of Physical Chemistry C, 125(34), 18841-18848. https://doi.org/10.1021/acs.jpcc.1c06240
Frye, K., Abend, S., Bartosch, W., Bawamia, A., Becker, D., Blume, H., Braxmaier, C., Chiow, S.-W., Efremov, M. A., Ertmer, W., Fierlinger, P., Franz, T., Gaaloul, N., Grosse, J., Grzeschik, C., Hellmig, O., Henderson, V. A., Herr, W., Israelsson, U., ... Wörner, L. (2021). The Bose-Einstein Condensate and Cold Atom Laboratory. EPJ Quantum Technology, 8(1), Article 1. https://doi.org/10.1140/epjqt/s40507-020-00090-8, https://doi.org/10.15488/10339
Gebbe, M., Siemß, J.-N., Gersemann, M., Müntinga, H., Herrmann, S., Lämmerzahl, C., Ahlers, H., Gaaloul, N., Schubert, C., Hammerer, K., Abend, S., Ertmer, W., & Rasel, E. M. (2021). Twin-lattice atom interferometry. Nature Communications, 12(1), Article 2544. https://doi.org/10.1038/s41467-021-22823-8
Georgieva, H., López, M., Hofer, H., Kanold, N., Kaganskiy, A., Rodt, S., Reitzenstein, S., & Kück, S. (2021). Absolute calibration of a single-photon avalanche detector using a bright triggered single-photon source based on an InGaAs quantum dot. Optics express, 29(15), Article 430680. https://doi.org/10.1364/OE.430680
Georgieva, H., Meda, A., Raupach, S. M. F., Hofer, H., Gramegna, M., Degiovanni, I. P., Genovese, M., López, M., & Kück, S. (2021). Detection of ultra-weak laser pulses by free-running single-photon detectors: Modeling dead time and dark counts effects. Applied physics letters, 118(17), Article 174002. https://doi.org/10.1063/5.0046014
Gersema, P., Voges, K. K., Meyer zum Alten Borgloh, M., Koch, L., Hartmann, T., Zenesini, A., Ospelkaus, S., Zenesini, A., Lin, J., & Wang, D. (2021). Probing Photoinduced Two-Body Loss of Ultracold Nonreactive Bosonic Na23Rb87 and Na23K39 Molecules. Physical review letters, 127(16), Article 163401. https://doi.org/10.1103/PhysRevLett.127.163401
Glamazda, A., Sharafeev, A., Bohle, R., Lemmens, P., Choi, K. Y., Chou, F. C., & Sankar, R. (2021). Легування від CDW до топологічної надпровідності: роль дефектів у розсіюванні фононів у нецентросиметричному PbxTaSe2. Fizika Nizkikh Temperatur, 47(11), 994-1002.