QuantumFrontiers Forschung
Publikationen

Publikationen

Acknowledgement

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) im Rahmen der Exzellenzstrategie des Bundes und der Länder – EXC-2123 QuantumFrontiers – 390837967


Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC-2123 QuantumFrontiers – 390837967

Eine Publikation einreichen...
Einen Datensatz registrieren...

Zeige Ergebnisse 101 - 150 von 593

2023


Raupach, S. M. F., Sidorova, M., & Semenov, A. D. (2023). Photon number dependent afterpulsing in superconducting nanostrip single-photon detectors. Physical Review B, 108(5), Artikel 054507. https://doi.org/10.1103/physrevb.108.054507
Ritter, P. J., Stapelfeldt, F.-N., Tollkühn, M., Hanisch, D., Pröpper, M., Schilling, M., & Hampel, B. (2023). Antenna Designs for Efficient Coupling to Josephson Junctions for THz Microscopy. IEEE Transactions on Applied Superconductivity, 33(5), Artikel 1800705. https://doi.org/10.1109/tasc.2023.3249132
Dijck, E. A., Warnecke, C., Wehrheim, M., Henninger, R. B., Eff, J., Georgiou, K., Graf, A., Kokh, S., Kozhiparambil Sajith, L. P., Mayo, C., Schäfer, V. M., Volk, C., Schmidt, P. O., Pfeifer, T., & Crespo López-Urrutia, J. R. (2023). Sympathetically cooled highly charged ions in a radio-frequency trap with superconducting magnetic shielding. Review of scientific instruments, 94(8), Artikel 083203. https://doi.org/10.1063/5.0160537
Hartig, M. S., & Wanner, G. (2023). Tilt-to-length coupling in LISA Pathfinder: Analytical modeling. Physical Review D, 108(2), Artikel 022008. https://doi.org/10.48550/arXiv.2305.03667, https://doi.org/10.1103/PhysRevD.108.022008
Virgo Collaboration, Vahlbruch, H., Lück, H., & Danzmann, K. (2023). Frequency-Dependent Squeezed Vacuum Source for the Advanced Virgo Gravitational-Wave Detector. Physical review letters, 131(4), Artikel 041403. https://doi.org/10.1103/physrevlett.131.041403
Cieślik, A., Hackmann, E., & Mach, P. (2023). Kerr geodesics in terms of Weierstrass elliptic functions. Physical Review D, 108(2), Artikel 024056. https://doi.org/10.1103/PhysRevD.108.024056
Bilitewski, T., Domínguez-Castro, G. A., Wellnitz, D., Rey, A. M., & Santos, L. (2023). Tunable momentum pair creation of spin excitations in dipolar bilayers. Physical Review A, 108(1), Artikel 013313. https://doi.org/10.48550/arXiv.2302.09059, https://doi.org/10.1103/PhysRevA.108.013313
Spelthann, S., Thiem, J., Melchert, O., Komban, R., Gimmler, C., Demicran, A., Ruehl, A., & Ristau, D. (2023). Predicting the Excitation Dynamics in Lanthanide Nanoparticles. Advanced optical materials, 11(14), Artikel 2300096. https://doi.org/10.1002/adom.202300096
Singh, V. V., Müller, J., Biskupek, L., Hackmann, E., & Lämmerzahl, C. (2023). Equivalence of Active and Passive Gravitational Mass Tested with Lunar Laser Ranging. Physical Review Letters, 131(2), Artikel 021401. https://doi.org/10.48550/arXiv.2212.09407, https://doi.org/10.1103/PhysRevLett.131.021401
Cao, X., Yang, J., Fandrich, T., Zhang, Y., Rugeramigabo, E. P., Brechtken, B., Haug, R. J., Zopf, M., & Ding, F. (2023). A Solid-State Source of Single and Entangled Photons at Diamond SiV-Center Transitions Operating at 80K. Nano letters, 23(13), 6109-6115. https://doi.org/10.48550/arXiv.2304.14170, https://doi.org/10.1021/acs.nanolett.3c01570
Beer, K., Khosla, M., Köhler, J., Osborne, T. J., & Zhao, T. (2023). Quantum machine learning of graph-structured data. Physical Review A, 108(1), Artikel 012410. https://doi.org/10.48550/arXiv.2103.10837, https://doi.org/10.1103/PhysRevA.108.012410
Meyer-Hoppe, B., Baron, M., Cassens, C., Anders, F., Idel, A., Peise, J., & Klempt, C. (2023). Dynamical low-noise microwave source for cold-atom experiments. Review of Scientific Instruments, 94(7), Artikel 074705. https://doi.org/10.48550/arXiv.2003.10989, https://doi.org/10.1063/5.0160367
Ubbelohde, N., Freise, L., Pavlovska, E., Silvestrov, P. G., Recher, P., Kokainis, M., Barinovs, G., Hohls, F., Weimann, T., Pierz, K., & Kashcheyevs, V. (2023). Two electrons interacting at a mesoscopic beam splitter. Nature nanotechnology, 18(7), 733-740. https://doi.org/10.48550/arXiv.2210.03632, https://doi.org/10.1038/s41565-023-01370-x
Filzinger, M., Dörscher, S., Lange, R., Klose, J., Steinel, M., Benkler, E., Peik, E., Lisdat, C., & Huntemann, N. (2023). Improved limits on the coupling of ultralight bosonic dark matter to photons from optical atomic clock comparisons. Physical Review Letters, 130(25), 253001. Artikel 253001. https://doi.org/10.48550/arXiv.2301.03433, https://doi.org/10.1103/PhysRevLett.130.253001
Peters, L., Sergeev, D., Margenfeld, C., Müller, M., & Waag, A. (2023). Sublimation behavior of AlN in nitrogen and argon at conditions used for high-temperature annealing. Journal of applied physics, 133(23), Artikel 235704. https://doi.org/10.1063/5.0152054
Korbmacher, H., Domínguez-Castro, G. A., Li, W. H., Zakrzewski, J., & Santos, L. (2023). Transversal effects on the ground state of hard-core dipolar bosons in one-dimensional optical lattices. Physical Review A, 107(6), Artikel 063307. https://doi.org/10.48550/arXiv.2303.07217, https://doi.org/10.1103/PhysRevA.107.063307
Kusmierek, K., Mahmoodian, S., Cordier, M., Hinney, J., Rauschenbeutel, A., Schemmer, M., Schneeweiss, P., Volz, J., & Hammerer, K. (2023). Higher-order mean-field theory of chiral waveguide QED. SciPost Physics, 6(2), Artikel 041. https://doi.org/10.48550/arXiv.2207.10439, https://doi.org/10.21468/SciPostPhysCore.6.2.041
Latacz, B. M., Arndt, B. P., Bauer, B. B., Devlin, J. A., Erlewein, S. R., Fleck, M., Jäger, J. I., Schiffelholz, M., Umbrazunas, G., Wursten, E. J., Abbass, F., Micke, P., Popper, D., Wiesinger, M., Will, C., Yildiz, H., Blaum, K., Matsuda, Y., Mooser, A., ... Ulmer, S. (2023). BASE—high-precision comparisons of the fundamental properties of protons and antiprotons. European Physical Journal D, 77(6), Artikel 94. https://doi.org/10.1140/epjd/s10053-023-00672-y
Ding, S., Domínguez-Castro, G. A., Julku, A., Camacho-Guardian, A., & Bruun, G. M. (2023). Polarons and bipolarons in a two-dimensional square lattice. SciPost Physics, 14(6), Artikel A3. https://doi.org/10.48550/arXiv.2212.00890, https://doi.org/10.21468/SciPostPhys.14.6.143
Spengler, F., Belenchia, A., Rätzel, D., & Braun, D. (2023). Optical solitons in curved spacetime. Classical and quantum gravity, 40(14), 145008. Artikel 145008. https://doi.org/10.1088/1361-6382/acdd43
Nordmann, T., Wickenhagen, S., Doležal, M., & Mehlstäubler, T. E. (2023). Bichromatic UV detection system for atomically-resolved imaging of ions. Review of scientific instruments, 94(6), Artikel 063305. https://doi.org/10.48550/arXiv.2302.02489, https://doi.org/10.1063/5.0145409
Jürss, T., Grosche, G., & Koke, S. (2023). Free-space interferometer design for optical frequency dissemination and out-of-loop characterization below the 10−21-level. Photonics research, 11(6), 1113-1124. https://doi.org/10.1364/prj.485899
Guckel, J., Görke, M., Garnweitner, G., & Park, D. (2023). Smart Iterative Analysis Tool for the Size Distribution of Spherical Nanoparticles. Microscopy and microanalysis, 29(3), 1062-1070. Artikel ozad036. https://doi.org/10.1093/micmic/ozad036
Jones, B. D. M., Uola, R., Cope, T., Ioannou, M., Designolle, S., Sekatski, P., & Brunner, N. (2023). Equivalence between simulability of high-dimensional measurements and high-dimensional steering. Physical Review A, 107(5), Artikel 052425. https://doi.org/10.48550/arXiv.2207.04080, https://doi.org/10.1103/PhysRevA.107.052425
Jin, J., Bekker, H., Kirschbaum, T., Litvinov, Y. A., Pálffy, A., Sommerfeldt, J., Surzhykov, A., Thirolf, P. G., & Budker, D. (2023). Excitation and probing of low-energy nuclear states at high-energy storage rings. Physical Review Research, 5(2), Artikel 023134. https://doi.org/10.1103/PhysRevResearch.5.023134
Christinck, J., Hirt, F., Hofer, H., Liu, Z., Etzkorn, M., Dunatov, T., Jakšić, M., Forneris, J., & Kück, S. (2023). Bright single-photon emission from a GeV center in diamond under a microfabricated solid immersion lens at room temperature. Journal of applied physics, 133(19), Artikel 193102. https://doi.org/10.1063/5.0150208
Behren, B. V., Heinze, J., Bode, N., & Willke, B. (2023). High-power laser beam in higher-order Hermite–Gaussian modes. Applied physics letters, 122(19), Artikel 191105. https://doi.org/10.1063/5.0137085
Kulosa, A. P., Prudnikov, O. N., Vadlejch, D., Fürst, H. A., Kirpichnikova, A. A., Taichenachev, A. V., Yudin, V. I., & Mehlstäubler, T. (2023). Systematic study of tunable laser cooling for trapped-ion experiments. New journal of physics, 25(5), 053008. Artikel 053008. https://doi.org/10.1088/1367-2630/acd13b
Dickmann, J., Shelling neto, L., Gaedtke, M., & Kroker, S. (2023). Levitating the noise performance of ultra-stable laser cavities assisted by a deep neural network: the non-intuitive role of the mirrors. Optics express, 31(10), 15953-15965. https://doi.org/10.1364/OE.483550
Bahamonde, S., Doneva, D. D., Ducobu, L., Pfeifer, C., & Yazadjiev, S. S. (2023). Spontaneous scalarization of black holes in Gauss-Bonnet teleparallel gravity. Physical Review D, 107(10), Artikel 104013. https://doi.org/10.1103/PhysRevD.107.104013
Hartig, M. S., Schuster, S., Heinzel, G., & Wanner, G. (2023). Non-geometric tilt-to-length coupling in precision interferometry: mechanisms and analytical descriptions. Journal of Optics (United Kingdom), 25(5), Artikel 055601. https://doi.org/10.1088/2040-8986/acc3ac
Lotz, C., Piest, B., Rasel, E., & Overmeyer, L. (2023). The Einstein Elevator: Space Experiments at the new Hannover Center for Microgravity Research. Europhysics News, 54(2), 9-11. https://doi.org/10.1051/epn/2023201
Amaro, D., Lämmerzahl, C., & Macías, A. (2023). Particle motion in the Einstein-Euler-Heisenberg rotating black hole spacetime. Physical Review D, 107(8), Artikel 084040. https://doi.org/10.1103/physrevd.107.084040
Takashima, H., Schell, A. W., & Takeuchi, S. (2023). Numerical analysis of the ultra-wide tunability of nanofiber Bragg cavities. Optics express, 31(9), 13566-13575. https://doi.org/10.1364/OE.483843
Kedar, D., Yu, J., Oelker, E., Staron, A., Milner, W. R., Robinson, J. M., Legero, T., Riehle, F., Sterr, U., & Ye, J. (2023). Frequency stability of cryogenic silicon cavities with semiconductor crystalline coatings. OPTICA, 10(4), 464-470. https://doi.org/10.1364/OPTICA.479462
Voicu, N., Friedl-Szász, A., Popovici-Popescu, E., & Pfeifer, C. (2023). The Finsler Spacetime Condition for (α,β)-Metrics and Their Isometries. Universe, 9(4), Artikel 198. https://doi.org/10.3390/universe9040198
Kurečić, I., & Osborne, T. J. (2023). Stochastic integral representation for the dynamics of disordered systems. Physical Review A, 107(4), Artikel 042213. https://doi.org/10.1103/PhysRevA.107.042213
Willms, S., Bose, S., Melchert, O., Morgner, U., Babushkin, I., & Demircan, A. (2023). Self-Generation of Two-Frequency Compound States. IEEE photonics technology letters, 35(8), 406-409. https://doi.org/10.1109/LPT.2023.3252089
Pavlovska, E., Silvestrov, P. G., Recher, P., Barinovs, G., & Kashcheyevs, V. (2023). Collision of two interacting electrons on a mesoscopic beam splitter: Exact solution in the classical limit. Physical Review B, 107(16), Artikel 165304. https://doi.org/10.1103/PhysRevB.107.165304
Voigt, C., Sulzbach, R., Timmen, L., Dobslaw, H., Weise, A., Deng, Z., Stolarczuk, N., Pflug, H., Peters, H., Fietz, M., Thomas, M., Förste, C., & Flechtner, F. (2023). A superconducting gravimeter on the island of Heligoland for the high-accuracy determination of regional ocean tide loading signals of the North Sea. Geophysical journal international, 234(3), 1585-1602. https://doi.org/10.1093/gji/ggad147
Matiushechkina, M., Evlyukhin, A. B., Zenin, V. A., Heurs, M., & Chichkov, B. N. (2023). High-efficiency silicon metasurface mirror on a sapphire substrate. Optical materials, 138, Artikel 113618. https://doi.org/10.1016/j.optmat.2023.113618
Astrakharchik, G. E., Ardila, L. A. P., Jachymski, K., & Negretti, A. (2023). Many-body bound states and induced interactions of charged impurities in a bosonic bath. Nature Communications, 14(1), Artikel 1647. https://doi.org/10.48550/arXiv.2206.03476, https://doi.org/10.1038/s41467-023-37153-0
Aramthottil, A. S., Łącki, M., Santos, L., & Zakrzewski, J. (2023). Role of interaction-induced tunneling in the dynamics of polar lattice bosons. Physical Review B, 107(10), Artikel 104305. https://doi.org/10.48550/arXiv.2209.11644, https://doi.org/10.1103/PhysRevB.107.104305
Sauter, E., Abrosimov, N. V., Hübner, J., & Oestreich, M. (2023). Temperature dependence of the band gap of Si 28:P at very low temperatures measured via time-resolved optical spectroscopy. Physical Review Research, 5(1), Artikel 013182. https://doi.org/10.1103/PhysRevResearch.5.013182
Breton, N., Lämmerzahl, C., & Macías, A. (2023). Type- D solutions of the Einstein-Euler-Heisenberg nonlinear electrodynamics with a cosmological constant. Physical Review D, 107(6), Artikel 064026. https://doi.org/10.1103/physrevd.107.064026
Barzel, R., & Laemmerzahl, C. (2023). Role of indistinguishability and entanglement in Hong-Ou-Mandel interference and finite-bandwidth effects of frequency-entangled photons. Physical Review A, 107(3), Artikel 032205. https://doi.org/10.1103/PhysRevA.107.032205
Bahamonde, S., Dialektopoulos, K. F., Hohmann, M., Said, J. L., Pfeifer, C., & Saridakis, E. N. (2023). Perturbations in non-flat cosmology for f(T) gravity. European Physical Journal C, 83(3), Artikel 193. https://doi.org/10.1140/epjc/s10052-023-11322-3
Borca, B., Michnowicz, T., Aguilar-Galindo, F., Pétuya, R., Pristl, M., Schendel, V., Pentegov, I., Kraft, U., Klauk, H., Wahl, P., Arnau, A., & Schlickum, U. (2023). Chiral and Catalytic Effects of Site-Specific Molecular Adsorption. Journal of Physical Chemistry Letters, 14(8), 2072-2077. https://doi.org/10.1021/acs.jpclett.2c03575
Bravo, T., Rätzel, D., & Fuentes, I. (2023). Gravitational time dilation in extended quantum systems: The case of light clocks in Schwarzschild spacetime. AVS Quantum Science, 5(1), Artikel 014401. https://doi.org/10.1116/5.0123228
Kadum, J. E., Ji, J., Kuhl, A., Misera, M., Waterholter, T., & Koke, S. (2023). Optical frequency transfer with below 10(-21) uncertainty using a DFB-laser-based fiber Brillouin amplifier. APL Photonics, 8(3), Artikel 036113. https://doi.org/10.1063/5.0133919