[1] J. Dickmann, S. Sauer, et int, S. Kroker. Experimental realization of a 12,000-finesse laser cavity based on a low-noise microstructured mirror.
Communications Physics 6. doi:10.1038/s42005-023-01131-1 (2023).
[2] H. N. Hausser, J. Keller, et int, T. E. Mehlstäubler. An 115In+-172Yb+ Coulomb crystal clock with 2.5 ×10–18 systematic uncertainty.
arXiv: 2402.16807 [physics.atom-ph] (2024).
[3] C. Sanner, N. Huntemann, et int, S. G. Porsev. Optical clock comparison for Lorentz symmetry testing.
Nature 567, 204–208. doi:10.1038/s41586-019-0972-2 (2019).
[4] R. Schwarz, S. Dörscher, et int, C. Lisdat. Long term measurement of the 87Sr clock frequency at the limit of primary Cs clocks.
Physical Review Research 2. doi:10.1103/physrevresearch.2.033242 (2020).
[5] S. Dörscher, J. Klose, S. Maratha Palli, C. Lisdat. Experimental determination of the E 2–M1 polarizability of the strontium clock transition.
Physical Review Research 5. doi:10.1103/physrevresearch.5.l012013 (2023).
[6] C. Lisdat, S. Dörscher, I. Nosske, U. Sterr. Blackbody radiation shift in strontium lattice clocks revisited.
Physical Review Research 3. doi:10.1103/physrevresearch.3.l042036 (2021).
[7] R. Lange, N. Huntemann, et int, E. Peik. Excitation of an Electric Octupole Transition by Twisted Light.
Physical Review Letters 129. doi:10.1103/physrevlett.129.253901 (2022).
[8] S. Dörscher, A. Al-Masoudi, et int, C. Lisdat. Dynamical decoupling of laser phase noise in compound atomic clocks.
Communications Physics 3. doi:10.1038/s42005-020-00452-9 (2020).
[9] R. Kaubruegger, D. V. Vasilyev, et int, P. Zoller. Quantum Variational Optimization of Ramsey Interferometry and Atomic Clocks.
Physical Review X 11, 041045. doi:10.1103/PhysRevX.11.041045 (2021).
[10] M. Schulte, C. Lisdat, et int, K. Hammerer. Prospects and Challenges for Squeezing-Enhanced Optical Atomic Clocks.
Nature Communications 11, 5955. doi:10.1038/s41467-020-19403-7 (2020).
[11] T. Kielinski, P. Schmidt, K. Hammerer. GHZ protocols enhance frequency metrology despite spontaneous decay.
arXiv: 2406.11639 (2024).
[12] L. Pelzer, K. Dietze, et int, P. O. Schmidt. Multi-ion frequency reference using dynamical decoupling.
Phys. Rev. Lett. 133, 033203. doi:10.1103/PhysRevLett.133.033203 (2024).
[13] J. Grotti, I. Nosske, et int, C. Lisdat. Long-distance chronometric leveling with a portable optical clock.
Physical Review Applied 21. doi:10.1103/physrevapplied.21.l061001 (2024).
[14] S. A. King, L. J. Spieß, et int, P. O. Schmidt. An optical atomic clock based on a highly charged ion.
Nature 611, 43–47. doi:10.1038/s41586-022-05245-4 (2022).
[15] J. Tiedau, M. V. Okhapkin, et int, T. Schumm. Laser Excitation of the Th-229 Nucleus.
Physical Review Letters 132. doi:10.1103/physrevlett.132.182501 (2024).
[16] J. Yu, S. Häfner, et int, J. Ye. Excess Noise and Photoinduced Effects in Highly Reflective Crystalline Mirror Coatings.
Physical Review X 13. doi:10.1103/physrevx.13.041002 (2023).