[1] A. Vincent, J. Müller. Detection of time variable gravity signals using terrestrial clock networks.
Advances in Space Research 73, 3312–3320. doi:10.1016/j.asr.2023.07.058 (2024).
[2] A. Shabanloui, H. Wu, J. Müller. Estimation of Temporal Variations in the Earth’s Gravity Field Using Novel Optical Clocks Onboard of Low Earth Orbiters.
In: J.T. Freymueller, L. Sánchez (eds.) Gravity, Positioning and Reference Frames. REFAG 2022. IAG Symposia, vol 156. Springer, Cham. doi:10 . 1007/1345 _ 2023 _ 220 (2023).
[3] J. Grotti, I. Nosske, et int, C. Lisdat. Long-distance chronometric leveling with a portable optical clock.
Physical Review Applied 21. doi:10.1103/physrevapplied.21.l061001 (2024).
[4] C. Deppner, W. Herr, et int, E. M. Rasel. Collective-Mode Enhanced Matter-Wave Optics.
Physical Review Letters 127. doi:10.1103/physrevlett.127.100401 (2021).
[5] J. Kirsten-Siemß, F. Fitzek, et int, K. Hammerer. Large-Momentum-Transfer Atom Interferometers with μ rad-Accuracy Using Bragg Diffraction.
Physical Review Letters 131. doi:10.1103/PhysRevLett.131. 033602 (2023).
[6] K. Abich, A. Abramovici, et int, M. Zimmermann. In-Orbit Performance of the GRACE Follow-on Laser Ranging Interferometer.
Physical Review Letters 123. doi:10.1103/physrevlett.123.031101 (2019).
[7] K. Nicklaus, K. Voss, et int, J. J. E. Delgado. Towards NGGM: Laser Tracking Instrument for the Next Generation of Gravity Missions.
Remote Sensing 14, 4089. doi:10.3390/rs14164089 (2022).
[8] M. Misfeldt, V. Müller, et int, G. Heinzel. Scale Factor Determination for the GRACE Follow-On Laser Ranging Interferometer Including Thermal Coupling.
Remote Sensing 15. doi:10.3390/rs15030570 (2023).
[9] V. Huarcaya, M. Dovale Álvarez, et int, G. Heinzel. Single-Element Dual-Interferometer for Precision Inertial Sensing: Sub-Picometer Structural Stability and Performance as a Reference for Laser Frequency Stabilization.
Sensors 23, 9758. doi:10.3390/s23249758 (2023).
[10] A. Kupriyanov, A. Reis, et int, J. Müller. Benefit of enhanced electrostatic and optical accelerometry for future gravimetry missions.
Advances in Space Research 73, 3345–3362. doi:10.1016/j.asr.2023.12.067 (2024).
[11] A. Klemme, T. Warneke, et int, C. Lämmerzahl. Sediment transport in South Asian rivers high enough to impact satellite gravimetry.
Hydrology and Earth System Sciences 28, 1527–1538. doi:10.5194/hess-28-1527-2024 (2024).
[12] M. W. G. Hoffmann, L. Mayrhofer, et int, J. D. Prades. A Highly Selective and Self-Powered Gas Sensor Via Organic Surface Functionalization of p-Si/n-ZnO Diodes.
Advanced Materials 26, 8017–8022. doi:10.1002/ adma.201403073 (2014).
[13] C. Fàbrega, O. Casals, F. Hernández-Ramírez, J. Prades. A review on efficient self-heating in nanowire sensors: Prospects for very-low power devices.
Sensors and Actuators B: Chemical 256, 797–811. doi:10.1016/j.snb.2017.10.003 (2018).
[14] N. Markiewicz, O. Casals, et int, J. D. Prades. Micro light plates for low-power photoactivated (gas) sensors.
Applied Physics Letters 114. doi:10.1063/1.5078497 (2019)