[1] J. Lough, E. Schreiber, et int, K. Danzmann. First Demonstration of 6 dB Quantum Noise Reduction in a Kilometer Scale Gravitational Wave Observatory.
Physical Review Letters 126. doi:10.1103/physrevlett.126. 041102 (2021).
[2] F. Acernese, M. Agathos, et int, K. Danzmann. Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light.
Physical Review Letters 123. doi:10.1103/physrevlett.123.231108 (2019).
[3] M. Mehmet, H. Vahlbruch. The Squeezed Light Source for the Advanced Virgo Detector in the Observation Run O3.
Galaxies 8, 79. doi:10.3390/galaxies8040079 (2020).
[4] F. Acernese, M. Agathos, et int, K. Danzmann. Frequency-Dependent Squeezed Vacuum Source for the Advanced Virgo Gravitational-Wave Detector.
Phys. Rev. Lett. 131, 041403. doi:10.1103/PhysRevLett.131.041403 (2023).
[5] F. Wellmann, N. Bode, et int, D. Kracht. Low noise 400 W coherently combined single frequency laser beam for next generation gravitational wave detectors.
Optics Express 29, 10140. doi:10.1364/oe.420350 (2021).
[6] F. Wellmann, M. Steinke, et int, D. Kracht. Performance study of a high-power single-frequency fiber amplifier architecture for gravitational wave detectors.
Appl. Opt. 59, 7945. doi:10.1364/ao.401048 (2020).
[7] J. Junker, D. Wilken, et int, M. Heurs. Frequency-Dependent Squeezing from a Detuned Squeezer.
Physical Review Letters 129. doi:10.1103/physrevlett.129.033602 (2022).
[8] F. Meylahn, B. Willke, H. Vahlbruch. Squeezed States of Light for Future Gravitational Wave Detectors at a Wavelength of 1550 nm.
Phys. Rev. Lett. 129, 121103. doi:10.1103/PhysRevLett.129.121103 (2022).
[9] J. Heinze, B. Willke, H. Vahlbruch. Observation of Squeezed States of Light in Higher-Order Hermite-Gaussian Modes with a Quantum Noise Reduction of up to 10 dB.
Phys. Rev. Lett. 128, 083606. doi:10.1103/PhysRevLett.128.083606 (2022).
[10] J. Schweer, D. Steinmeyer, K. Hammerer, M. Heurs. All-optical coherent quantum-noise cancellation in cas-caded optomechanical systems.
Physical Review A 106. doi:10.1103/physreva.106.033520 (2022).
[11] M. Armano, H. Audley, et int, P. Zweifel. Sub-Femto-g Free Fall for Space-Based Gravitational Wave Observatories: LISA Pathfinder Results.
Physical Review Letters 116. doi:10.1103/physrevlett.116.231101 (2016).
[12] M. Armano, H. Audley, et int, P. Zweifel. Sensor Noise in LISA Pathfinder: In-Flight Performance of the Optical Test Mass Readout.
Physical Review Letters 126. doi:10.1103/physrevlett.126.131103 (2021).
[13] M. Armano, H. Audley, et int, P. Zweifel. Sensor noise in LISA Pathfinder: An extensive in-flight review of the angular and longitudinal interferometric measurement system.
Physical Review D 106. doi:10.1103/physrevd.106.082001 (2022).
[14] M. Armano, H. Audley, et int, P. Zweifel. Tilt-to-length coupling in LISA Pathfinder: A data analysis.
Physical Review D 108. doi:10.1103/physrevd.108.102003 (2023).
[15] K.-S. Isleif, G. Heinzel, M. Mehmet, O. Gerberding. Compact Multifringe Interferometry with Subpicometer Precision.
Physical Review Applied 12. doi:10.1103/physrevapplied.12.034025 (2019).
[16] G. Bergmann, C. Cordes, et int, M. Mehmet. A torsion balance as a weak-force testbed for novel optical inertial sensors.
Classical and Quantum Gravity 41, 075005. doi:10.1088/1361-6382/ad29e8 (2024).
[17] M.-S. Hartig, S. Schuster, G. Heinzel, G. Wanner. Non-geometric tilt-to-length coupling in precision interferometry: mechanisms and analytical descriptions.
J. of Optics 25. doi:10.1088/2040-8986/acc3ac (2023).
[18] S. Abend, B. Allard, et int, E. Zupanič. Terrestrial Very-Long-Baseline Atom Interferometry: Workshop Summary.
arXiv: 2310.08183 [hep-ex] (2023).