ResearchTopics
Laser Development and Stabilisation for Next-Generation GWDs

Laser Development and Stabilisation for Next-Generation Gravitational Wave Detectors

Design and stabilization of high-power laser systems for next generation Gravitational Wave Detectors.

Contributions to QuantumFrontiers

  • Power noise sensing below the quantum limit via the quantum-correlation-method and squeezed light assisted power-noise detection.
  • Opto-mechanical sub-shot noise sensing of power fluctuations required for the laser stabilization of next generation gravitational wave detectors.
  • Creation of a worldwide leading collaboration for GWD laser development and their stabilization.

Collaborative Innovation

Power scaling concepts for single-frequency fibre amplifiers at 1064 nm, 1550 nm and 2000 nm (laser development group, LZH / laser stabilization team, AEI, LUH)

  • designing, fabricating and testing all-fibre amplifier concepts for GWDs
  • optimizing the free-running noise performance of these lasers
  • investigating hybrid solid-state fiber-amplifier systems
  • designing the control systems required for the coherent combination of two high power beams
  • coherent combination of multiple high-power lasers

Laser stabilisation for 3rd generation gravitational wave detectors (laser development group, LZH / laser stabilization team, AEI, LUH)

  • development of shot-noise-limited sensing of laser frequency, power and beam pointing fluctuations
  • analysis and mitigation of the influence of scattered light in sensing schemes
  • development of laser stabilization schemes with high-bandwidth fibre-actuators at 1550nm and 1064nm
  • improved sub-shot noise power sensing via the combination of squeezed light and the optical AC-coupling technique for laser power stabilization
  • laser power stabilization via back-action free interferometric sensing of power fluctuations with micro-oscillator mirrors
  • simulations to derive the laser stability requirement of next generation GWDs
  • advancing future integration of the displacement sensing interferometers developed for back-action free power noise measurements as sensors in the sophisticated power stabilization loops of future GWDs (Kroker, TUBS / Heurs AEI, LUH / Willke AEI, LUH)

Scientific Output

  • Publications

    Cullen T, Aronson S, Pagano R, Trad Nery M, Cain H, Cripe J et al. Passive laser power stabilization via an optical spring. Optics letters. 2022 Jun 1;47(11):2746-2749.

    doi.org/10.48550/arXiv.2204.00414

    ,

    doi.org/10.1364/OL.456535

    Meylahn F, Willke B. Characterization of Laser Systems at 1550 nm Wavelength for Future Gravitational Wave Detectors. Instruments. 2022 Mar 6;6(1). 15.

    doi.org/10.3390/instruments6010015

    Meylahn F, Willke B, Vahlbruch H. Squeezed States of Light for Future Gravitational Wave Detectors at a Wavelength of 1550 nm. Physical review letters. 2022 Sep 16;129(12). 121103.

    doi.org/10.1103/physrevlett.129.121103

    Meylahn F, Knust N, Willke B. Stabilized laser system at 1550 nm wavelength for future gravitational-wave detectors. Physical Review D. 2022 Jun 22;105(12). 122004.

    doi.org/10.1103/physrevd.105.122004

    Bailes M, Berger BK, Brady PR, Branchesi M, Danzmann K, Evans M et al. Gravitational-wave physics and astronomy in the 2020s and 2030s. Nature Reviews Physics. 2021 May;3(5):344-366.

    doi.org/10.1038/s42254-021-00303-8

    Booker P, de Varona O, Steinke M, Weßels P, Neumann J, Kracht D. Two-stage fully monolithic single-frequency Er:Yb fiber amplifier at 1556 nm for next-generation of gravitational wave detectors. In Zervas MN, Jauregui-Misas C, editors, Fiber Lasers XVIII: Technology and Systems. SPIE. 2021. 116650O

    doi.org/10.1117/12.2577446

    Brockmüller E, Hochheim S, Wessels P, Koponen J, Lowder T, Novotny S et al. Pump combiner with chirally coupled core fibers for side pumped single frequency all fiber amplifiers. In Glebov AL, Leisher PO, editors, Components and Packaging for Laser Systems VII. SPIE. 2021. 116670J. (Proceedings of SPIE - The International Society for Optical Engineering).

    doi.org/10.1117/12.2583079

    Hochheim S, Brockmuller E, Wessels P, Steinke M, Koponen J, Lowder T et al. Highly-integrated signal and pump combiner in chirally-coupled-core fibers. Journal of lightwave technology. 2021 Sep 13;39(22):7246-7250.

    doi.org/10.1109/JLT.2021.3111993

    Hochheim S, Brockmüller E, Wessels P, Koponen J, Lowder T, Novotny S et al. Low noise spliceless single-frequency chirally-coupled-core all-fiber amplifier. In Zervas MN, Jauregui-Misas C, editors, Fiber Lasers XVIII: Technology and Systems. SPIE. 2021. 116651L. (Proceedings of SPIE - The International Society for Optical Engineering).

    doi.org/10.1117/12.2577441

    Junker J, Wilken D, Huntington E, Heurs M. High-precision cavity spectroscopy using high-frequency squeezed light. Optics express. 2021 Feb 10;29(4):6053-6068.

    doi.org/10.1364/OE.416713

    ,

    doi.org/10.15488/11389

    Nery MT, Venneberg JR, Aggarwal N, Cole GD, Corbitt T, Cripe J et al. Laser power stabilization via radiation pressure. Optics letters. 2021 Apr 14;46(8):1946-1949.

    doi.org/10.1364/OL.422614

    Trad Nery M. Laser power stabilization via radiation pressure. Nature Reviews Physics. 2021 Oct;3(10):677.

    doi.org/10.1038/s42254-021-00361-y

    ,

    doi.org/10.15488/11012

    Wellmann F, Bode N, Steinke M, Meylahn F, Willke B, Overmeyer L et al. Coherent beam combining of two single-frequency 200W fiber amplifiers for gravitational wave detectors. In Zervas MN, editor, Fiber Lasers XVIII: Technology and Systems. SPIE. 2021. 116651J

    doi.org/10.1117/12.2578085

    Wellmann F, Bode N, Wessels P, Overmeyer L, Neumann J, Willke B et al. Low noise 400 W coherently combined single frequency laser beam for next generation gravitational wave detectors. Optics express. 2021 Mar 29;29(7):10140-10149.

    doi.org/10.1364/OE.420350

    Bode N, Briggs J, Chen X, Frede M, Fritschel P, Fyffe M et al. Advanced ligo laser systems for o3 and future observation runs. Galaxies. 2020 Dec 8;8(4):1-13. 84.

    doi.org/10.3390/galaxies8040084

    Bode N, Meylahn F, Willke B. Sequential high power laser amplifiers for gravitational wave detection. Optics express. 2020 Sep 18;28(20):29469-29478.

    doi.org/10.1364/OE.401826

    Booker P, de Varona O, Steinke M, Weßels P, Neumann J, Kracht D. Experimental and numerical study of interlock requirements for high-power EYDFAs. Optics Express. 2020 Oct 12;28(21):31480-31486.

    doi.org/10.1364/OE.405812

    Heinze J, Vahlbruch H, Willke B. Frequency-doubling of continuous laser light in Laguerre–Gaussian modes LG0,0 and LG3,3. Optics letters. 2020 Sep 15;45(18):5262-5265.

    doi.org/10.1364/OL.402371

    ,

    doi.org/10.1364/OL.410805

    Heinze J, Vahlbruch H, Willke B. Numerical analysis of LG3,3second harmonic generation in comparison to the LG0,0case. Optics express. 2020 Nov 10;28(24):35816-35832.

    doi.org/10.1364/OE.409507

    Hochheim S, Steinke M, Wessels P, Neumann J, Kracht D. Broadband excess intensity noise due to an asymmetric Brillouin gain spectrum in optical fibers. OSA Continuum. 2020;3(10):2902-2911.

    doi.org/10.1364/OSAC.404728

    Hochheim S, Brockmüller E, Wessels P, Steinke M, Koponen J, Lowder T et al. Integrated fiber components based on chirally-coupled-core fibers for all-fiber amplifier. In Ferrari M, Mackenzie JI, Taccheo S, Taccheo S, editors, Fiber Lasers and Glass Photonics: Materials through Applications II. SPIE. 2020. 113570Y. (Proceedings of SPIE - The International Society for Optical Engineering).

    doi.org/10.1117/12.2555401

    Hochheim S, Brockmüller E, Wessels P, Koponen J, Lowder T, Novotny S et al. Integrated signal and pump combiner in chirally-coupled-core fibers for all-fiber lasers and amplifiers. In OSA Advanced Photonics Congress (AP) 2020 (IPR, NP, NOMA, Networks, PVLED, PSC, SPPCom, SOF). OSA - The Optical Society. 2020

    doi.org/10.1364/sof.2020.sotu2h.6

    Hochheim S, Steinke M, Wessels P, De Varona O, Koponen J, Lowder T et al. Single-frequency chirally-coupled-core all-fiber amplifier with 100W in a linearly-polarized TEM00-mode. In Dong L, editor, Fiber Lasers XVII: Technology and Systems. SPIE. 2020. 112601C. (Proceedings of SPIE - The International Society for Optical Engineering).

    doi.org/10.1117/12.2542192

    Nery MT, Danilishin SL, Venneberg JR, Willke B. Fundamental limits of laser power stabilization via a radiation pressure transfer scheme. Optics letters. 2020 Jul 10;45(14):3969-3972.

    doi.org/10.1364/OL.394547

    Wellmann F, Steinke M, Wessels P, Bode N, Meylahn F, Willke B et al. Performance study of a high-power single-frequency fiber amplifier architecture for gravitational wave detectors. Applied optics. 2020 Sep 10;59(26):7945-7950.

    doi.org/10.1364/AO.401048

    Booker P, Dürbeck M, Boetti NG, Pugliese D, Abrate S, Milanese D et al. Single-frequency Er3+ doped phosphate fiber MOPA. In 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019. Institute of Electrical and Electronics Engineers Inc. 2019. 8871636

    doi.org/10.1109/cleoe-eqec.2019.8871636

    Hochheim S, Steinke M, Koponen J, Lowder T, Novotny S, Neumann J et al. Monolithic amplifier based on a chirally-coupled-core fiber. In 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019. Institute of Electrical and Electronics Engineers Inc. 2019. 8872811

    doi.org/10.1109/cleoe-eqec.2019.8872811

    Wellmann F, Steinke M, Thies F, Bode N, Oppermann P, Willke B et al. Characterization of the monolithic fiber amplifier engineering prototype for the next generation of gravitational wave detectors. In Fiber Lasers XVI: Technology and Systems. SPIE. 2019. 1089722. (Proceedings of SPIE - The International Society for Optical Engineering).

    doi.org/10.1117/12.2508532

TG Members

  • Involved Members and their Relevant Expertise
    Members Institution Relevant Expertise
    Benno Willke, Leader AEI Squeezed Light Sources; Advanced Light Sources
    Marina Trad Nery AEI Advanced Light Sources; Quantum limited laser stabilization
    Dietmar Kracht LZH Advanced Light Sources; Precision Additive Manufacturing of Quantum Sensors; High power solid-state single frequency amplifiers
    Merle Schneewind LZH Advanced Light Sources
    Fabian Meylahn AEI Advanced Light Sources; Quantum limited laser stabilization Sqzeezed Light
    Nina Bode AEI Advanced Light Sources; Quantum limited laser stabilization
    Jasper Venneberg AEI Quantum limited laser stabilization; Squzeezed Light
    Nicole Knust AEI Advanced Light Sources; Quantum limited laser stabilization Squzeezed Light
    Phillip Booker LZH Advanced Light Sources
    Sven Hochheim LZH Advanced Light Sources
    Felix Wellmann LZH Advanced Light Sources
    Peter Weßels LZH Advanced Light Sources
    Michael Steinke LUH Active optical fibers and fiber components
    Stefanie Kroker PTB / TUBS ET Analyse
    Uwe Sterr PTB Novel Frequency References
    Ernst M. Rasel LUH Quantum Gravimeters; Atom-Chip Based Gravimeters and Inertial Sensors
    Harald Lück AEI Next Generation Gravitational Wave Observatories; Sub-Standard Quantum Limit Interferometry
    Henning Vahlbruch AEI Non-classical light sources
    Eike Brockmüller LZH Advanced Light Sources
    Kristopher Kruska LZH Advanced Light Sources
    Graziano Pascale AEI Quantum limited laser stabilization