Kontakt
 
ForschungTopical Groups
Quantum sensors for geodetical observations and relativistic geodesy

Quantum sensors for geodetical observations and relativistic geodesy

Develop and test transportable optical clocks for chronometric levelling with cm resolution to improve height networks.

ACTIVITIES

  • Develop and test transportable optical clocks to an uncertainty of few 10^-18
  • Chronometric levelling with cm resolution using transportable optical clocks
  • Improve height networks with this novel method
  • Develop and test transportable quantum gravimeter
  • Measure gravity with unprecedented uncertainty of few nm/s²
  • Contribute accurate gravity data to geodetic observation campaigns 

COMPETENCES/SERVICES

  • Schmidt, Lisdat: Transportable optical lattice clocks for chronometric levelling campaigns
  • Rasel, Herr: Transportable Quantum Gravimeter for absolute gravity surveys
  • Müller, Denker, Timmen, Weigelt: Geoid and height determination; expertise in satellite and terrestrial gravimetry, modelling and analysis of gravity field data, and gravimetric monitoring of mass change processes
  • Lämmerzahl, Philipp, Müller: Theoretical framework of relativistic geodesy, definition of observables and measurements

PUBLICATIONS

Zeige Ergebnisse 1 - 20 von 25
1 2 Last

Albers H, Corgier R, Herbst A, Rajagopalan A, Schubert C, Vogt C et al. All-optical matter-wave lens using time-averaged potentials. Communications Physics. 2022 Mär 16;5(1). 60.

doi.org/10.48550/arXiv.2109.08608

,

doi.org/10.1038/s42005-022-00825-2

Belenchia A, Carlesso M, Bayraktar Ö, Dequal D, Derkach I, Gasbarri G et al. Quantum physics in space. Physics reports. 2022 Mär 11;951:1-70.

doi.org/10.1016/j.physrep.2021.11.004

Deppner C, Herr W, Cornelius M, Stromberger P, Sternke T, Grzeschik C et al. Collective-Mode Enhanced Matter-Wave Optics. Physical review letters. 2021 Sep 3;127(10). 100401.

doi.org/10.1103/PhysRevLett.127.100401

Gebbe M, Siemß J-N, Gersemann M, Müntinga H, Herrmann S, Lämmerzahl C et al. Twin-lattice atom interferometry. Nature Communications. 2021 Mai 5;12(1). 2544.

doi.org/10.1038/s41467-021-22823-8

Hensel T, Loriani S, Schubert C, Fitzek F, Abend S, Ahlers H et al. Inertial sensing with quantum gases: a comparative performance study of condensed versus thermal sources for atom interferometry. European Physical Journal D. 2021 Mär 22;75. 108.

doi.org/10.1140/epjd/s10053-021-00069-9

Lachmann MD, Ahlers H, Becker D, Dinkelaker AN, Grosse J, Hellmig O et al. Ultracold atom interferometry in space. Nature Communications. 2021 Dez;12(1). 1317.

doi.org/10.1038/s41467-021-21628-z

Schubert C, Abend S, Gersemann M, Gebbe M, Schlippert D, Berg P et al. Multi-loop atomic Sagnac interferometry. Scientific Reports. 2021 Dez;11(1). 16121.

doi.org/10.1038/s41598-021-95334-7

Timmen L, Gerlach C, Rehm T, Völksen C, Voigt C. Geodetic-Gravimetric Monitoring of Mountain Uplift and Hydrological Variations at Zugspitze and Wank Mountains (Bavarian Alps, Germany). Remote sensing. 2021 Mär 1;13(5). 918.

doi.org/10.3390/rs13050918

Zhong L, Sośnica K, Weigelt M, Liu B, Zou X. Time-Variable Gravity Field from the Combination of HLSST and SLR. Remote sensing. 2021 Sep 2;13(17). 3491.

doi.org/10.3390/rs13173491

Fitzek F, Siemß JN, Seckmeyer S, Ahlers H, Rasel EM, Hammerer K et al. Universal atom interferometer simulation of elastic scattering processes. Scientific Reports. 2020 Dez 17;10(1). 22120.

doi.org/10.1038/s41598-020-78859-1

Gersemann M, Gebbe M, Abend S, Schubert C, Rasel EM. Differential interferometry using a Bose-Einstein condensate. European Physical Journal D. 2020 Okt 1;74(10). 203.

doi.org/10.1140/epjd/e2020-10417-8

Häfner S, Herbers S, Vogt S, Lisdat C, Sterr U. Transportable interrogation laser system with an instability of mod σy = 3 × 10−16. Optics express. 2020 Mai 25;28(11):16407-16416.

doi.org/10.1364/OE.390105

Hartmann S, Jenewein J, Giese E, Abend S, Roura A, Rasel EM et al. Regimes of atomic diffraction: Raman versus bragg diffraction in retroreflective geometries. Physical Review A. 2020 Mai 8;101(5). 053610.

doi.org/10.1103/PhysRevA.101.053610

Heine N, Matthias J, Sahelgozin M, Herr W, Abend S, Timmen L et al. A transportable quantum gravimeter employing delta-kick collimated Bose–Einstein condensates. European Physical Journal D. 2020 Aug 25;74(8). 174.

doi.org/10.1140/epjd/e2020-10120-x

Heinze J, Vahlbruch H, Willke B. Frequency-doubling of continuous laser light in Laguerre–Gaussian modes LG0,0 and LG3,3. Optics letters. 2020 Sep 15;45(18):5262-5265.

doi.org/10.1364/OL.402371

,

doi.org/10.1364/OL.402371

,

doi.org/10.1364/OL.410805

Müller J, Wu H. Using quantum optical sensors for determining the Earth’s gravity field from space. Journal of geodesy. 2020 Aug 1;94(8). 71.

doi.org/10.1007/s00190-020-01401-8

Philipp D, Hackmann E, Lämmerzahl C, Müller J. Relativistic geoid: Gravity potential and relativistic effects. Physical Review D. 2020 Mär 17;101(6). 064032.

doi.org/10.1103/PhysRevD.101.064032

Richardson LL, Nath D, Rajagopalan A, Albers H, Meiners C, Schubert C et al. Opto-mechanical resonator-enhanced atom interferometry. Communications Physics. 2020 Nov 13;3(1). 208.

doi.org/10.1038/s42005-020-00473-4

Schilling M, Wodey É, Timmen L, Tell D, Zipfel KH, Schlippert D et al. Gravity field modelling for the Hannover 10 m atom interferometer. Journal of Geodesy. 2020 Nov 27;94(12). 122.

doi.org/10.1007/s00190-020-01451-y

,

doi.org/10.15488/10717

Timmen L, Rothleitner C, Reich M, Schröder S, Cieslack M. Investigation of Scintrex CG-6 Gravimeters in the Gravity Meter Calibration System Hannover. AVN Allgemeine Vermessungs-Nachrichten. 2020;127(4):155-162.

Involved QF Members
Members Institution Relevant Expertise
Waldemar Herr, LeaderDLR-SI / LUHAtom-Chip Based Gravimeters and Inertial Sensors
Ernst M. RaselLUHQuantum Gravimeters; Atom-Chip Based Gravimeters and Inertial Sensors
Jürgen MüllerLUHRelativistic Geodesy; LLR Relativity Test; Application of Quantum Gravimetry
Ludger TimmenLUHGeodesy with Gravimeters
Christian LisdatPTBSr Optical Lattice Clock
Piet O. SchmidtPTB / LUHQuantum Logic Spectroscopy of Highly Charged Ions; Transportable Al+ Clock
Heiner DenkerLUHGravity field modelling, geoid, height systems, chronometric levelling
Matthias WeigeltLUHSatellite Gravimetry, Loading, deformation, gravity field, local modeling
Christian SchubertDLR-SI / LUHAtom-Chip Based Gravimeters and Inertial Sensors
Nina HeineLUHQuantum Gravimetry
Sven AbendLUHAtom-chip based interferometry and inertial sensors for navigation
Hendrik HeineLUHAtom Chip and Grating MOTs
Tobias LeopoldDLR-SISingle-beam MOTs and miniaturised atom sources
Claus LämmerzahlZARMGeneral Relativity
Dennis PhilippZARMRelativistic Geodesy, formalism, framework, theory
Ingo NoßkePTBSr Optical Lattice Clock
Manuel SchillingDLR-SIAbsolute and relative gravimetry, gravity field modelling
Tim LückePTBSr Optical Lattice Clock
Stephan HannigPTBTransportable Al+clock, 3d-printed miniaturized vacuum chambers, optical breadboarding
Julian LemburgLUH
Pablo Nunez von VoigtLUH